
Towards Trustable Software

in association with

WHITE PAPER
DISCUSSION DOCUMENTOCT 2017

A SYSTEMATIC APPROACH TO ESTABLISHING TRUST IN SOFTWARE

2

Foreword

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

As society’s dependence on software increases, there has never
been a greater need to address the question: should we trust
the software on which we depend? This paper examines the crit-
ical role that software now plays in virtually all aspects of mod-
ern life and, in particular, the degree to which it can be trusted
under various circumstances.

The proposed concept of “a trustable software process” is a
step towards an essential, underpinning platform to ensure
solid foundations of societal resilience, analogous to existing
trust-generation mechanisms in key industries such as finance,
healthcare and construction.

Within the space of a few decades, virtually all of human society
has become critically dependent upon computer software. This
trend is set to accelerate as our industries, homes, transporta-
tion and a plethora of mechanical and electronic objects – the
“Internet of Things” – become increasingly software controlled
and interconnected. However, while improved regulation of
construction, healthcare, law, financial services and other fun-
damental building blocks of human society has achieved ever
greater levels of trust, the reverse is true of software. Software
has evolved from basic electronic circuits and simple control
logic to levels of unfathomable complexity containing hundreds
of millions of lines of code.

In many critical cases, the notion that computer software may
be trusted is a house built on sand. Engineering practices within
the software industry, which would be considered irresponsible
in construction or mechanical engineering, have led to the cre-
ation of systems that are not simply unworthy of trust, but inca-
pable of having their level of trustworthiness assessed.

This blind spot has crept up upon us and it should be of major
concern to governments, regulators, the software industry and
the general public because it risks future crises of confidence,
when these systems inevitably fail in unexpected ways, with far
reaching and possibly systemic consequences.

We very much hope that this paper will serve to stimulate dis-
cussion of the first principles and steps towards consensus as
to how software should be designed, constructed and operated
so as to be trustable.

by the Rt Hon. Lord Reid of Cardowan

Executive Chairman, ISRS

Rt Hon. Lord Reid of Cardowan

Towards Trustable Software | White Paper

3

Contents Foreword

Executive Summary

Introduction: The Need for Trustable Software

The Value of a Trustable Approach

Why Industry Cannot Solve This Alone

A Manifesto for Trustable Software

Conclusions: Applying Trustability to Software

References

2

4

7

10

12

15

20

21

TO PARTICIPATE IN THE TRUSTABLE DISCUSSION, LEAVE COMMENTS ON
THIS WHITE PAPER AND HELP SHAPE WHAT NEEDS TO HAPPEN NEXT,
PLEASE REGISTER YOUR INTEREST AT

www.trustablesoftware.com

ISRS and Codethink thank the many contributors to this white paper and in particular:

Codethink: Emmet Hickory, Paul Sherwood, Edmund Sutcliffe

ISRS: Peter Domican, David Levinger, Prof JP MacIntosh, Asutosh Yagnik

About Codethink

Codethink is a leading provider of effective software engineering solutions, particularly in the in-
frastructure critical space. The company develops and maintains system and device-level soft-
ware supporting advanced technical applications for its international corporate clients, across a
range of industries including aerospace, automotive, finance, medical and telecoms. Codethink has
pioneered software industry thinking around the concepts of trustable software, with a view to
improving the quality of software engineering for societal good.

About the Institute for Strategy, Resilience & Security (ISRS) at UCL

Over the last decade the Institute for Strategy Resilience & Security (ISRS) at UCL has served as
a pioneer and forum for next generation thinking. Founded by the Rt Hon. Lord Reid of Cardowan,
ISRS provides analysis and assessment of the major issues of resilience with respect to national
and global infrastructure and the ability of governments, regulators and businesses to respond
to them. The Institute advises industry and the public sector on the persistent challenges to their
agility, stamina and capacity in strategic decision making, so as to better face existential threats,
risks, and disruptive innovation that are not addressed by conventional strategy and forecasting.

For industry and public sector queries in relation to this paper, please email: info@isrs.org.uk

For media enquiries about this paper, please email: press@isrs.org.uk

4

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Towards Trustable Software

Within the space of a few decades, human
civilisation has become highly dependent upon
computer software, a trend that shows no signs of
reversing, as our industries, homes, transportation
and a plethora of mechanical and electronic objects
– the “Internet of Things” – become increasingly
software controlled and interconnected.

However, while improved regulation of
construction, healthcare, law, financial services
and other fundamental building blocks of human
society has achieved ever greater levels of trust,
the reverse is true of software. Engineering
practices within the software industry, which would
be considered irresponsible in construction or
mechanical engineering, have led to the creation of
systems that are not simply unworthy of trust, but
incapable of having their level of trustworthiness
assessed. As software has evolved from basic,
highly deterministic electronic circuits and simple
control logic to levels of unfathomable complexity
contained within billions of lines of code, this blind
spot has crept up upon us and it should be of major
concern to governments, regulators, the software
industry and the general public. When these
systems fail in unexpected ways, as they inevitably
must, they risk not only far reaching and potentially
systemic consequences, but also triggering future
crises of confidence in the products and services
that they support.

Existing initiatives to improve the trustworthiness
of software have focused largely on how to
build better software by improving safety,
reliability, availablility, resilience and security.
Complementary to these, the concept of trustable
software proposes a general solution that adds
auditability to the software development process,
enabling parties in the value chain to assess the
degree to which they can trust a particular piece
of computer code, in the same way that audit trails
provide confidence in other industries. Auditability
does not de facto enforce trust, rather it strongly
incentivises behaviours along the value chain that
lead to it through increased transparency of the
process.

All critical products and services upon which
human health, safety and security depend, have,
of necessity, evolved recognisable processes to
provide transparency and allow assessment of the
degree to which to which that product or service
is capable of being trusted. We refer to these as
trustable processes because they generate the
ability to trust. These vary from industry to industry,
but generally take the form of laws, regulations,
standards and audit practices. They provide
confidence that e.g. a pill may be swallowed, that is
safe to board an aircraft - conversely, that the risk
of using a product or service is worth accepting.

However, there exists an important exception –
software. In an age of increasing reliance upon
software and ever more complex, interconnected
and interdependent systems, we must address the
question: to what extent can we trust this software?

Unlike physical construction, software does not have
to conform to a set of building standards; unlike the
pharmaceutical industry, there are no notified bodies
or regulators; unlike the legal profession there is
not a single body upholding standards of practice,
and unlike accounting, software is unaudited. There
is currently no recognisable process, regulatory
framework, set of standards or audit trail by which,
at any stage, it is possible to assess the degree to
which software is capable of being trusted. Instead,
software use remains largely an act of faith, built
upon a stack of unverified assumptions, as most
computer code is written informally and evaluated
based on whether or not it works. Little software is
formally verified to be error free and it is generally
supplied in an opaque manner to its users. Even
open source software, while in principle visible in its
entirety, is in practice often so large and complex
that fully understanding its operation is unfeasible.

We are on the cusp of further dramatic increases
in the capabilities and complexity of software,
and the issues of trust that are raised by its use
are set to increase exponentially with the advent
of evolving technologies such as robotics and
artificial intelligence. Virtually every aspect of
human life will involve or be controlled entirely by
devices incorporating software. Software is now
used to deliver many essential public services and

EXECUTIVE SUMMARY

Towards Trustable Software
A SYSTEMATIC APPROACH TO ESTABLISHING TRUST IN SOFTWARE

Towards Trustable Software | White Paper

5

to support critical national infrastructure. The loss
or denial of service for any reason, accidental or
deliberate, has potential consequences that range
from mere inconvenience and reputational damage,
to financial loss and ultimately loss of life.

The advent of the driverless car will finalise an
ongoing engineering paradigm inversion, whereby
a vehicle that is currently considered primarily as
a mechanical object supported by software will
become viewed as primarily software encapsulated
within mechanical components. Concerns of safety
and security will shift from trust in mechanical
components to trust in the software, for example,
can a cyber attacker take control of the vehicle?

A Critical Issue to Address Now

In the wake of the global financial crisis of 2007-
2008, it became clear that the crisis was avoidable
and was caused by widespread failures in regulation
and supervision, poor management of accumulated
systemic risk, lack of transparency, breakdown in
accountability and ethics and failures to correctly
price risk.

Analogously, despite an urgent unmet need, the
software industry is inexorably drawn towards
fuelling growth and will de facto ignore and
resist a “push” towards a systematic approach to
trust in software. An equivalent “pull” is required
by governments and regulators in recognising
the problem and encouraging the adoption of
trustablility as standard practice, before a series
of events or a particular disaster forces this issue
into the wider public domain and Government is
required to compel industry post hoc to address
the issue of trust in software.

By 2020, at least 20 billion devices will be connected
to the Internet, each more complex, interconnected
and interdependent than ever before. Ignoring the
systemic risks, lack of transparency, breakdown in
accountability and failure of regulatory supervision
holds the potential to accumulate a crisis as potent
as any previously experienced.

Operating in an environment with software
supplied ‘as safe as possible’, as it currently is,
but without an auditable process for verifying the

provenance and testing of that code, is no longer
appropriate. Without adopting a process by which
the trustability of software can be determined,
society will increasingly stumble from one problem
to the next. Whether this is experienced as failure
in use, increased cyberattacks, or financial loss, the
result will inevitably lead to an erosion of public
confidence with repercussions for governments and
regulators. Despite the challenges of adopting this
approach in an industry that has historically been
relatively free of constraints, the opportunity for
nation states that are early adopters is competitive
advantage through the creation of a safer society
and a safer place to do business.

Trustability: An Established Key to Trust

A trustable process can be defined as “auditable in
such a way that, at any point in the process, one
can assess the degree to which it can be trusted”.
Although this term may be unfamiliar in everyday
language, examples in use are immediately
recognisable e.g. financial auditing is an established
process that evolved over centuries in response
to the need for trust in finance. The handling of
evidence in the criminal justice system also follows
a strict process so that a jury can have confidence
in the provenance of evidence and that it has not
been tampered with.

The requirements and steps of these trustable
processes may at first appear to have little in
common. However, all such processes share a set
of features that enable trustability: those providing
a product, service or information are required
to present detailed evidence on the provenance,
manufacture, testing and validity of what is being
supplied. The evidence required, its format and the
standards for preparing that evidence are specified
by a regulator or agency, and it is then made
available to a nominated body to inspect and audit
to certify its accuracy.

To find out more please visit:
www.trustablesoftware.com

6

Our concern reached a tipping point with the realisation that so-
ciety is racing towards adoption of autonomous vehicles, with-
out any ability to prove that their control software is safe or
secure.

From two decades of witnessing software practices across
multiple industries, three things are clear:

•	 most	 software	 developers	 lack	 the	 knowledge	 and	 skills	 to	
make their work safe and secure

•	 there	 are	 no	 consistent	 or	 reliable	 measures	 for	 software	
risks, quality, productivity, or costs.

•	 most	software	users	do	not	understand	the	risks

While mature industries have standards, and regulations that
require work to be checked, both by the implementing organisa-
tion and independently, the software industry has not addressed
the needs for consistent and reliable measures for software
risks, quality, productivity, or costs.

As a result all software, even that governing critical infrastruc-
ture, is expected to have bugs and vulnerabilities, and is used
with little awareness of its risks. We are all therefore exposed
to financial, physical and emotional harm from software, with-
out the required processes for redress or improvement that are
norms in other industries.

We need to stimulate improvement in a way that raises the bar
across the entire industry for service providers, software ven-
dors, operators and users.

Paul Sherwood
CEO, Codethink

In 2016, after decades of private
discussion with colleagues and

international customers, Codethink CEO
Paul Sherwood initiated the public debate

on ‘trustable software engineering’.

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Towards Trustable Software | White Paper

7

The Need for Trustable Software
Trust is the basis upon which democracy, modern economics
and societal stability have been built. Underpinning public and
market confidence, trust in our political, legal and financial
frameworks generates willingness to delegate control, be gov-
erned, accept taxation, invest, partner and respect ownership.
Through minimising the pricing of risk and arbitrage into trans-
actions, trust has enabled efficient markets, confidence in bank-
ing and the economic expansion of civilisation. The emergence
of cryptocurrencies and concepts such as the Internet of Agree-
ments are based on distributed ledgers as next generation sys-
tems of trust.

All critical products and services upon which human health,
safety and security depend, have, of necessity, evolved recog-
nisable processes to provide transparency and allow assess-
ment of the degree to which to which that product or service
is capable of being trusted. We will refer to these as trustable
processes because they generate the ability to trust. These
vary from industry to industry, but generally take the form of
laws, regulations, standards and audit practices. They provide
confidence that a pill may be swallowed, that a bridge may be
crossed, that fire safety has been adequately provided for, that
is safe to board an aircraft - conversely, that the risk of using a
product or service is worth accepting.

However, there exists an important exception – software. In an
age of increasing reliance upon software and ever more com-
plex, interconnected and interdependent systems, we must ad-
dress the question: to what extent can we trust this software?

Unlike physical construction, software does not have to con-
form to a set of building standards; unlike the pharmaceutical
industry, there are no notified bodies or regulators; unlike the
legal profession there is not a single body upholding standards
of practice, and unlike accounting, software is unaudited. There
is currently no recognisable process, regulatory framework, set
of standards or audit trail by which, at any stage, it is possible to
assess the degree to which software is capable of being trusted.

Instead, software use remains largely an act of faith, built upon
a stack of unverified assumptions, as most computer code is
written informally and evaluated based on whether or not it
works. Little software is formally verified to be error free and
it is generally supplied in an opaque manner to its users. Even
open source software, while in principle visible in its entirety, is
in practice often so large and complex that fully understanding
its operation is unfeasible.

Introduction

The Importance of this Paper
While software has become critical
to virtually all aspects of modern life,
processes for determining whether
we can trust it are conspicuously ab-
sent.

The goal of this paper is to stimulate
discussion of the urgent need, po-
tential solutions and proposed next
steps to address the systemic risks
posed by that gap.

Among stakeholder groups – ven-
dors, purchasers, software engi-
neers, computer scientists, govern-
ment and regulators – there exists
little, if any, consensus as to how
software should be designed, con-
structed and operated to achieve this.

We examine current approaches and
deficiencies within the software in-
dustry towards the issue of trust and
propose the concept of a trustable
software engineering process as a
necessary and appropriate underpin-
ning platform to ensure solid founda-
tions for the trust of software going
forward.

The principles of how that process
might work are outlined, by estab-
lishing software engineering practic-
es that generate audit information at
all stages of creation, deployment,
change and use, to enable the contin-
ual assessment of trust, just as this
is done in other industries.

8

Five key unknowns lie at the heart of risks posed by this lack of
transparency:

•		Where does the code come from and who wrote it?

•		Does the code do what it is supposed to do and does it not do
what it is not supposed to do?

•		How was the code built and tested prior to deployment?

•		Can we reproduce it exactly as it was originally generated?

•		Can	we	maintain it without breaking it?

Shifting from ad hoc to systematic trust
It is hard to overstate the degree to which software plays a
pivotal role in the critical infrastructure and vital functioning of
modern human society.

The operation of our homes, workplaces, government, edu-
cation system, food and energy production, communications,
logistics, healthcare and financial systems are increasingly re-
liant upon its correct operation. The loss or denial of service
for any reason, accidental or deliberate, has potential conse-
quences that range from mere inconvenience and reputational
damage, to financial loss and ultimately loss of life. As these
system evolve with increasing levels of capability, complexity
and interconnectivity, we believe that it is essential to consider
replacing the current ad hoc approach to trust in software with
a systematic approach.

In engineering, software has become ubiquitous and insepara-
ble from the mechanical systems it supports. The advent of
the driverless car will finalise an ongoing paradigm inversion,
whereby a vehicle that is currently considered primarily as a
mechanical object supported by software will become viewed
as primarily software encapsulated within mechanical compo-
nents. Concerns of safety and security will shift from trust in
the mechanical components, such as, whether the brakes work,
to trust in the software, for example, can a cyber attacker take
control of the vehicle, or the consequences of software failure
at high speed.

Operating in an environment with software supplied ‘as safe as
possible’, as it currently is, but without an auditable process for
verifying the provenance and testing of that code, is no longer
appropriate. Without adopting a process by which the trusta-
bility of software can be determined, society will increasingly
stumble from one problem to the next. Whether this is experi-
enced as failure in use, increased cyberattacks, or financial loss,
the result will inevitably lead to an erosion of public confidence
with repercussions for governments and regulators.

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

There is currently no recognisable
set of processes, regulation,
set of standards or audit trail by
which, at any stage, it is possible
to assess the degree to which
software software is capable of
being trusted.

Towards Trustable Software | White Paper

9

A Critical Issue To Address Now
In the wake of the global financial crisis of 2007-2008, it be-
came clear that the crisis was avoidable and was caused by
widespread failures in regulation and supervision, poor man-
agement of accumulated systemic risk, lack of transparency,
breakdown in accountability and ethics and failures to correctly
price risk.

Analogously, despite the urgent unmet need, the software indus-
try is inexorably drawn towards fuelling growth and will de fac-
to ignore and resist this “push” towards a systematic approach
to trust in software. An equivalent “pull” is required by govern-
ments and regulators in recognising the problem and encour-
aging the adoption of trustablility as standard practice, before
a series of events or a particular disaster forces this issue into
the wider public domain and Government is required to compel
industry post hoc to address the issue of trust in software.

By 2020, at least 20 billion devices1 will be connected to the In-
ternet, each more complex, interconnected and interdependent
than ever before. Ignoring the systemic risks, lack of transpar-
ency, breakdown in accountability and failure of regulatory su-
pervision holds the potential to accumulate a crisis as potent as
any previously experienced.

Trustability: An Established Key to Trust
A trustable process can be defined as “auditable in such a way
that, at any point in the process, one can assess the degree
to which it can be trusted”. Although this term may be unfa-
miliar in everyday language, examples in use are immediately
recognisable and underpin the existence of industries such as
construction, financial services, healthcare, aerospace, nuclear
power and public transportation, where safety and security are
paramount, and the consequences of failure are substantial.

Financial auditing is an established process that evolved over
centuries in response to the need for trust in finance. The han-
dling of evidence in the criminal justice system2 also follows a
strict process so that a jury can have confidence in the prove-
nance of evidence and that it has not been tampered with.

The requirements and steps of these trustable processes may
at first glance appear to have little in common. However, all such
processes share a set of features that enable trustability: those
providing a product, service or information are required to pres-
ent detailed evidence on the provenance, manufacture, testing
and validity of what is being supplied. The evidence required, its
format, the standards for preparation and storage are specified
by a regulator or agency, and it is then made available to a nom-
inated body to inspect and audit to certify its accuracy.

A trustable process is auditable
in such a way that, at any point in

the process, one can assess the
degree to which it can be trusted.

It enables stakeholders to
decide how much they can

trust its outputs by providing
transparency about the process

and its inputs.

10

For Governments: A Systemic Solution Un-
derpinning Public and Market Confidence
Governments are simultaneously eager to exploit the economic
growth, investment and jobs associated with software creation
yet face a myriad of issues, risks and concerns. Addressing sys-
temic issues due to trust in software would be a major step for-
ward for governments as a resilient and systematic response
rather than a case by case approach. An implemented trustable
software process would underpin stakeholder confidence in the
industry, reducing risk and increasing trust between parties and
software in use. In turn this would enable other industries to
accelerate innovation, driving economic growth and improved
societal safety, security and prosperity.

For Regulators: An Enabler Of Regulatory
And Standards-Based Oversight
A well designed trustable process has significant advantages
for regulators and provides governments and their agencies
with a scalable framework for both assessing risk and regulat-
ing the use of software.

The onus on the provider to show that their software is trust-
able reduces the workload of the regulator. Regulators need
only hold top level information, with the participating companies
writing agreed detailed code and data into a agreed immutable
audit log , which cannot be accessed retrospectively by the com-
pany. This reduces both cost and complexity for the regulator
who can audit this information as part of a forensic examination
in the case of a major incident. Software that fails to meet a doc-
umented requirement as part of the operation of the regulated
product or service would be detectable and could, if desired, be
suspended.

For Insurers: More Accurate Assessment
of Liability & Provision of Cover
The vast majority of software licenses explicitly disclaim any
liability, even for fitness to purpose, whilst some contain very
limited warranties regarding the quality of the licensed soft-
ware. Financial compensation for loss and damage suffered by
the purchaser as a result of defective software is rare. Assess-
ing companies and products against generic compliance check-
lists is unlikely to evaluate their cyber-risk adequately.

For an insurer, the cost of cover needs to reflect the risks faced
and the potential consequential payout to policyholders. For the
insured, a policy needs to be meaningful and likely to pay out
in reasonable circumstances. A trustable process for software

The Value of
a Trustable
Approach

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Towards Trustable Software | White Paper

11

would form part of a more dynamic method of minimising vul-
nerabilities, assessing risk, and defining sensible exclusion thus
creating an efficient cyber insurance market.

For the Legal System: Immutable Evidence
Software failure that results in loss inevitably leads to disputes
around liability. Trustable software provides a body of evidence
around the provenance of the code, authorisations and its test-
ing. In the event of a dispute over failure, lawyers and experts
would have access to an immutable evidence trail with which to
examine the sequence of events and code delivered, which can
be trusted when used in court. This, in turn, holds the potential
to enable expert witness evidence to be more objective and cas-
es more efficient.

For Industry: Recognition of Value
There is a growing recognition within the industry that a higher
standard of trust, beyond simply increasing quality, is required
and there is a groundswell within the software industry coalesc-
ing around the concept of trustable.

Early adopters will benefit from increased recognition of their
trustable products and services. Companies that choose to prog-
ress this now will be in a much stronger position to determine
the direction that trustable will take and anticipate the needs of
governments,regulators and the public rather than have con-
ditions imposed in haste. The barriers to adoption of trustable
principles are not insurmountable, if industry is involved in de-
signing the best solution.

For Purchasers: Value For Money
Interpretation of trustable audit information enables stakehold-
ers to evaluate performance and process efficiency. Output
measured as lines of code is a poor indicator of the software
creation process - trustable provides insight.

For the Public: Confidence
Trustable processes address the asymmetry of knowledge and
resources between providers and users. Users can consider a
product worthy of trust because they have trust in the process
even though they have no detailed knowledge of how it works.
Just as a “CE mark” on a product gives the public confidence
that a product meets the appropriate EU regulations, so it may,
in future, be possible for the public to have confidence in soft-
ware that has been produced through a recognisable trustable
process.

12

Our Journey to a New Era of Computing
Human kind is entering a new era of computing, and possibly a
new evolution of its own existence, as many functions and crit-
ical decisions are increasingly taken over by software, without
human oversight. Satellite navigation systems have removed
the need for a driver to think about which route to take and us-
ers can effectively defer low level selection choices to the algo-
rithms in home assistants such as Siri and Alexa. Software is no
longer just an add-on helping the driver to control the car but is
increasingly controlling the vehicle -- the “driverless car” is now
a reality in software terms.

Non-Deterministic Systems
From the first conception of mechanical computation engines
by Babbage and Lovelace in the 19th century, the inception of
modern computer devices by Turing in the 1930’s and the first
implementation of stored electronic memory in the 1940’s, soft-
ware was originally an expression of deterministic mathematics
and algorithms designed to solve bounded problems.

In the past, one could place a larger degree of trust in software
prior to deployment. Code was small in volume (typically a few
thousand lines), simple and deterministic. The code was exten-
sively user tested prior to deployment onto systems running
on isolated secure computers and to hack a system required
resources and knowledge to exploit vulnerabilities. The situation
today is radically different.

Today software has diversified in construction and operation
to include innumerable underlying combinations of hardware,
firmware, operating systems, programming languages, tools
and software services which are constantly being changed and
updated. These systems are moving increasingly to non-deter-
ministic, based on artificial intelligence, neural networks and
machine learning.

An Explosion of Complexity
It is now common for systems to contain millions (Facebook) or
even billions (Google) of lines of code. In the automobile indus-
try, software in cars has evolved from a few thousand lines of
code to control specific functions, to 100 million lines of code in
the modern luxury car3 controlling all aspects of the car includ-
ing throttle control and simple parking manoeuvres. Further-
more, with current microservices architecture, while reviewing
many small pieces of code is still possible for an individual, it is
becoming impossible for them to have a systematic view of all
possible interactions.

The net affect of this complexity is that purchasers have lost To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Why industry
cannot solve
this alone

Towards Trustable Software | White Paper

13

the ability to adequately test the software they are buying, and
in practice have to rely on the vendor to assert fitness for pur-
pose, despite the fact that vendors explicitly disclaim fitness for
purpose in their legal small print.

In addition to proliferation in scale, interconnectivity generated
by the intermeshing of the myriad components involved has re-
sulted in a complex ecosystem. This complexity and intercon-
nectedness make systems significantly more vulnerable to fail-
ure or cyber attack from an ever increasing number of people
with the skills to do it.

The increasing power and portability of devices on which soft-
ware operates from mainframes to personal computers,
through to smartphones and wearable devices, has led to an
exponential increase in available applications of ever broader
utility. Key trends in technology and the key indicators of tech-
nology growth, indicate that this growth is far from at an end
and that this pace of change is accelerating rather than slowing
down. As each new device creates new potential applications
this in turn generates new demand.

A Gold Rush Culture Where Innovation and
Profits Trump Prudence
Like the Industrial Revolution, the internet and its myriad of de-
vices and applications, has created an entirely new global econ-
omy. It appears to be an apparently boundless market where
each new development creates ever more opportunity. Accord-
ing to Gartner, worldwide IT spending is forecast to reach $3.5
trillion in 2017, while software spending is projected to grow 7.2
percent in 2017 to $357 billion4.

Like its 19th century counterpart, in a period of unfettered inno-
vation where productivity increases outstripped worker safety,
it appears to have passed a tipping point where the ubiquity and
importance of software are such that considerations of trust
can no longer just be left to the industry and the market alone.

Like banks in the pre-crisis era before 2007, under “gold rush”
conditions, capturing growth and market share is all important
for commercial developers and there is little incentive to pro-
mote a regulated environment in which innovation and profits
are constrained. Rather problems can be “fixed” later, once they
are experienced in use.

The high growth labour market for developers also places pres-
sure on the level of requisite experience. Today, an “experienced”
developer may only have five years of real world experience
with a particular programming language. With labour at a pre-
mium, the industry is focused on training which produces more
developers yet resistant to requirements for professional quali-
fications and evidence based professional development which

As of March 2017, Android
users were able to choose
between 2.8 million apps;
Apple users were able to
chooise between 2.2 million
apps.5

14

slows down supply. This makes rational sense in terms of the
industry but, in terms of external trust, the opposite is often
true. No reputable civil or mechanical engineering firm would
use an unqualified engineer, irrespective of their talent.

Existing Software Quality and Trust
Much activity has been dedicated to improving software engi-
neering processes by which code is produced. Generally accept-
ed standards are collected in the Software Engineering Body of
Knowledge (SWEBOK), and international standard ISO/IEC TR
19759:20055.

Previous initiatives around trust in software have concentrat-
ed on quality standards and improving engineering processes
on the premise that a reliable system creates trust. The recent
Trustworthy Software Framework6 aimed to introduce meth-
odologies to improve quality and hence trust. Like other qual-
ity-based methodologies, it fails to consider the provenance of
the software, which is an essential consideration in the case of
any major failure or cyber attack. Though the impact of this
approach is yet to be fully assessed, it seems to counter the
industry trend for minimum regulation and maximum flexibility.

Formal Methods
Formal methods7 are increasingly being used to help reduce er-
rors in programs as a response to cyber attack. Formally veri-
fied software is software for which there exists a mathematical
proof that it does something, (and often that it only does that
thing). Using this method, entire programs may, in theory, be
tested with the same certainty that mathematicians prove the-
orems. However, in practice, formal methods are used to verify
smaller but especially vulnerable or critical pieces of a system,
like operating systems or cryptographic protocols and there
are claims that formal methods are not performant8. Formal
methods will make systems more trustworthy over time but
the possibility of vulnerabilities especially in complex intercon-
nected systems still exists. Furthermore, the quality of what
was built may be “perfect” but whether what was built was what
the user wants or expects is an entirely different question.

While it may be possible to prove epistemologically that an en-
tire system is “correct”, if only the vendor can assert this and
there is no method of verifiying or auditing that assertion, then
the information asymmetry between the parties still makes the
software untrustable.

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Towards Trustable Software | White Paper

15

A Manifesto
for Trustable
Software

Guiding Principles for Trustable Software
Just as blockchain technology9 is redefining trust in transactions
as a technology, the software industry needs to redefine its
approach to trust in building software. Deploying the software
and hoping that it is trustworthy in use, however good the build,
is no longer appropriate for many applications if software of
unknown provenance is added to a critical network. Trustwor-
thiness in software may evolve over time but, on its own, will
always be a subjective measure.

A trustable software process is not a prescribed methodology.
Rather it sets the principles and the supporting evidence required
to support that the principles have been met (Table 1). As long
as the principles of trustable are evidenced, then the method
by which the evidence is produced is not subject to restriction.
However, in reality, unless a software package is extremely sim-
ple, requirements, testing etc, will likely need to be automated in
order to ensure that there is sufficient quality of record keeping.

TAblE 1: CORE PRINCPlES Of TRUSTAblE

Core Principles of Trustable Audit Evidence Required

•	 We know where the code
comes from

•	 Does	the	code	do	what	it	is	
supposed to do and does it
not do what it is not sup-
posed to do?

•	 We know how the code was
built and tested prior to
deployment

•	 We can reproduce it exactly
from source code

•	 We can update the code
and be confident it will not
break or regress

•	 Evolution of problem/scope
(requirements, standards
and verification criteria)

•	 Evolution of solution/archi-
tecture

•	 Selection/production of
software (including tests)

•	 Evolution of tests, test
results and satisfaction of
validation criteria

•	 Traceability back through
all previous phases

•	 Maintenance changes/up-
grades are being applied to
the whole pipeline, not just
code

This enables industries and companies to adapt the concept to
their own particular planning methodologies and processes. It is
a process which sets out to evidence, at every stage of software
development, that the principles of trustable have been met.
The degree of information required between parties is flexible
beyond some minimum criteria. Hence the process can be used
in many different circumstances. By being as non-prescriptive

16

as possible in the way that trustable is achieved, the process fits
with different philosophies, methodologies and technologies.
This is vital for its adoption and adaptation to future technologi-
cal developments in the industry.

Just as accounts are asserted to be “true and fair” and are spec-
ified a way such that they may be audited or inspected, so we
could monitor software production, perform a series of checks,
produce metadata to evidence those checks, keep a record of
that information and provide an output in an agreed format to
stipulated parties.

The Components of a Trustable Software
Process
A trustable software process sets out to capture the evidence
that proves that the principles of trustable have been met. Fig-
ure 1 shows how this process could operate in practice. Drawing
an analogy with the construction industry, trustable software
needs plans (requirements), regulations to be met (standards,
tests and data to evidence those principles have been met), re-
corded information about who is building each piece and sign-
ing it off (developer and approver identities), a record of what
was built and how it was built (final code and its development
branches) and the sign-off process by a building control offi-
cer (testing results and release to deployment). These records
would also be available to a third party inspector should there
be a requirement to inspect the records at any time.

Software Requirements Specification
In a trustable process, any code must be matched to a require-
ment whether it is an original requirement or a new or modified
requirement as the project progresses i.e. there is evidence of
evolution of the problem/scope and evidence of evolution of
the solution/architecture. Evidence that maintenance changes/
upgrades are being applied is also required. A new piece of code
must relate to a new requirement or an identified vulnerability
or issue. The mechanism for capturing the original agreed re-
quirements and subsequent approved changes is the software
requirements specification. The agreed specification and up-
dates are part of the evidence required as part of the trustable
process.

The trustable process is independent of the methodology used
for the project: both a traditional waterfall approach or Agile
Methodology in all its various forms can be accommodated, as
long as evolving requirements are documented and the code
produced is against those requirements.

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Towards Trustable Software | White Paper

17

Process Information Capture
The data relating to a trustable software process needs to be
captured frequently and in a way that it cannot be altered ret-
rospectively. This would be achieved via an immutable logged
audit trail around the development of the code available to the
purchaser and to any required 3rd party.

Two primary methods are available. The first, echoing current
regulatory practices, requires a third party – a regulator – to
be the trusted holder of the audit trail. Hashes of information
would be continually deposited with the regulator enabling
them to reconstruct the chain of change. A second method uses
blockchain technology incorporating chained hashing of the
trustable data captured – a process that can be decentralised,
with a distributed ledger. In both cases, hashing transforms data
of any size into short, fixed-length values. Transactions stored
onto blockchain become increasingly more difficult to alter over
time increasing the difficulty and cost of possible fraud.

The trustable software process would record the agreed infor-
mation required which relates to all the events that contributed
to the development branches of the final code and send this
to the agreed immutable audit log, which can be examined by
anyone who is authorised e.g. the purchaser, a third party or
regulator. The exact detail of what is recorded and who can view
what would be agreed via the taxonomy.

fIgURE 1: EXAMPlE Of AN END-TO-END TRUSTAblE PROCESS

18

The process for the generation of the meta-data is shown in
Figure 2. Metadata, defined by the taxonomy, is output at each
stage and stored in the immutable audit log.

External Audit Data and Audit Mechanisms
An extract of the trustable process data can be sent from the
software vendor to a regulator, third party or purchaser as re-
quired. This data must be linked to the immutable log enabling
an approved 3rd party to trace the provenance of the code back
through the development process, much the same way as an
auditor auditing financial accounts can request and examine
individual records if required. In trustable, an “auditor” would
be looking for discrepancies such as source keys which do not
match up, built artifact checksums that do not line up, builds that
are not reproducible and patches that did not pass in testing.

Trustable Taxonomy and Ontology
A trustable software process requires both a taxonomy and an
ontology. The evidence needs to be routinely captured in order
to assert the provenance and testing of code. The “rules” about
what needs to be captured when is agreed prior to commence-
ment of coding. As best practice, one would envisage that the
generated data for a trustable process is machine readable in
order for the evidence to be analysed using automated tools.

A taxonomy is a structured framework which specifies how to
formally describe the data required to evidence agreed trust-
able principles. For example, HM Revenue and Customs specify To

w
ar

ds
 T

ru
st

ab
le

 S
of

tw
ar

e

fIgURE 2: EVIDENCE IS COllECTED AT EVERY STAgE Of ThE TRUSTAblE PROCESS

Towards Trustable Software | White Paper

19

XBRL requirements for the filing of company accounts10, which
enables the data to be processed automatically by software. An
ontology is a formal naming and definition of the types, proper-
ties, and interrelationships of the entities. In trustable software
this would be used to define the basic evidence produced and
enable a means of identifying data between the parties that
could not be shared publically, e.g. a user identity which can be
traced back via company records to an individual developer.

Because of the differing nature of requirements and power be-
tween vendor and supplier, a “one size fits all” taxonomy would
be impractical just as building regulations for a skyscraper
would be inappropriate for a family home or vice versa.

There will likely be a number of options for trustable taxono-
mies (Figure 3). Three common scenarios would be:

1. A vendor generated trustable taxonomy suitable for Busi-
ness to Consumer models or Business to Business models
where there are a large number of customers. The vendor
would create a standard taxonomy which would be supplied
to an agreed third party or regulator where required.

2. Relationships where there is a large degree of purchasing
power e.g. the NHS The purchaser will specify the taxonomy
which needs to be followed as part of the tendering process
along with other requirements.

3. The vendor and purchaser would negotiate a mutually
agreed taxonomy depending on the requirements of the
project.

fIgURE 3: EVIDENCE IS COllECTED AT EVERY STAgE Of ThE TRUSTAblE PROCESS

20

To
w

ar
ds

 T
ru

st
ab

le
 S

of
tw

ar
e

Applying Trustability to Software
Today, software purchasing and use relies largely on a combi-
nation of reputational and experiential trust. Purchasers largely
rely on brands, recommendations and experience in use. A repu-
table brand has value because it implies that others were satis-
fied. Reputational trust is achieved through recommendation or
the collective opinion of others. Experiential trust derives from
successful use of a product or service to the point where it is
considered trustworthy, regardless of other evidence.

While issues with trust in software have long been recognised,
the default approach of the industry has been to focus on im-
proving the quality and trustworthiness through better code,
new programming languages, greater attention to bugs, and
more frequent and improved security patches. Though logical
for providers, this is an subjective and non-systemic response.

Various established approaches have attempted to create arbi-
trary standards for trusted and trustworthy software, but these
are application-specific and apply to systems in a particular
state of delivery. A holistic solution is required, which provides
for a far higher standard of evidence of the whole process by
which a system is built, operated and maintained to stated re-
quirements and standards agreed at the start of the project, and
adapted as the requirements change.

Supporting Learning and Resilience
Trustable processes are not infallible, rather their efficacy de-
rives from strongly incentivising participants in the value chain
to act professionally and responsibly – or suffer sanction. It is
the combination of the need to provide proof that the process
is being followed, the provision of key data to interested and in-
dependent parties and the subsequent auditing of that data that
encourages integrity, and, through compliance, evolves trust to-
wards the standards required for society’s needs.

As risks can never be totally eliminated, a trustable process
needs to maintain confidence, even when the process has not
delivered the desired result, by providing resilience to failure.
Resilience, in the case of a trustable process, is therefore not
just about a government, regulator, company or other body re-
sponding to an individual event or disaster but the ability for
the system to respond to that event systematically. If there is a
disaster, the trustable process maintains that trust by providing
the relevant authorities with data and documentation to help in-
vestigate the root cause. Once the root cause is known, action
can be taken to eliminate or reduce the same potential risk in
similar conditions. Trustable processes give people confidence
in a product or service even in the aftermath of a disaster.

Resilience (noun.)

The enduring power of a body
or bodies for transformation,
renewal and recovery with
the flux of interactions and
flow of events.

Conclusions:
Applying
Trustability
to Software

Towards Trustable Software | White Paper

21

1. Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent
From 2016 http://www.gartner.com/newsroom/id/3598917

2. Police and Criminal Evidence Act 1984 (PACE) codes of practice https://www.gov.
uk/guidance/police-and-criminal-evidence-act-1984-pace-codes-of-practice

3. How Many Millions of Lines of Code Does It Take? http://www.visualcapitalist.com/
millions-lines-of-code/

4. Gartner Says Global IT Spending to Reach $3.5 Trillion in 2017 http://www.gartner.
com/newsroom/id/3482917

5. Software Engineering Body of Knowledge https://www.iso.org/standard/33897.
html

6. Trustworthy Software Foundation http://tsfdn.org/ts-framework/

7. Formal Methods - an introduction to the topic https://users.ece.cmu.edu/~koop-
man/des_s99/formal_methods/

8. https://www.cs.princeton.edu/~appel/certicoq/

9. How Does Blockchain Technology Work? https://www.coindesk.com/information/
how-does-blockchain-technology-work/

10. HM Revenue and Customs XBRL guide for UK businesses https://www.gov.uk/gov-
ernment/publications/xbrl-guide-for-uk-businesses/xbrl-guide-for-uk-businesses

References

Towards Trustable Software
The proposed approach of trustable software described here
adds transparency to the design, development and testing pro-
cess for software code, and generates and collects together
assurances on each piece of software. Snapshots of software
at key points in its development are accompanied by a linked
immutable audit log containing key information about the pro-
cess by which the software has been produced, installed and
maintained.

A downstream party relies on the producing party to capture
the evidence correctly, using chained hashes or “blockchain”, to
ensure that it is computationally unfeasible to alter the code-log
relationship. This metadata can be made available to any third
party, improving transparency and enabling downstream cus-
tomers to assess the degree to which software can be trusted.

In turn this places pressure on all of the entities in the design,
development and deployment chain to act according to stan-
dards and leads to trust in exactly the same way that it does in
construction, pharmaceuticals and financial reporting.

How a trustable software process would work in practice needs
to be explored and discussed further with a view to generating a
reference implementation. The generic trustable software pro-
cess that we present in this paper is a first step in this direction.

We invite comment and feedback from all stakeholder parties
with a view towards a robust debate on the role that trustable
may play. Please visit our website at www.trustablesoftware.
com to include your comments and to contact us.

http://www.gartner.com/newsroom/id/3598917
http://www.gov.uk/guidance/police-and-criminal-evidence-act-1984-pace-codes-of-practice
http://www.gov.uk/guidance/police-and-criminal-evidence-act-1984-pace-codes-of-practice
http://www.visualcapitalist.com/millions-lines-of-code/
http://www.visualcapitalist.com/millions-lines-of-code/
2017 http://www.gartner.com/newsroom/id/3482917
2017 http://www.gartner.com/newsroom/id/3482917
https://www.iso.org/standard/33897.html
https://www.iso.org/standard/33897.html
http://tsfdn.org/ts-framework/
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
https://www.cs.princeton.edu/~appel/certicoq/
https://www.coindesk.com/information/how-does-blockchain-technology-work/
https://www.coindesk.com/information/how-does-blockchain-technology-work/
https://www.gov.uk/government/publications/xbrl-guide-for-uk-businesses/xbrl-guide-for-uk-businesses
https://www.gov.uk/government/publications/xbrl-guide-for-uk-businesses/xbrl-guide-for-uk-businesses

Legal Notice
This publication should not be construed to be a legal action of ISRS or Codethink. Third-party sources are quoted as appropriate. Neither ISRS nor Codethink is responsible for the content of the
external sources, including external websites, referenced in this publication.This publication is intended for information purposes only. It must be accessible free of charge. Neither ISRS nor Codethink,
nor any person acting on their behalf, is responsible for the use that might be made of the information contained in this publication.

Copyright Notice

© CC-BY-SA ISRS and Codethink 2017. Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0). You are free to: (i) share: copy and redistribute the material in any medium or format; (ii) adapt: remix, trans-
form, and build upon the material for any purpose, even commercially, under the following terms: (i) attribution: you must give appropriate credit, provide a link to the license, and indicate if changes
were made and you may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use; (ii) ShareAlike: If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as the original; (iii) no additional restrictions: you may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits. Reproduction is authorised provided the source is acknowledged. For reproduction or use of third party source material and media, permission must be sought
directly with the copyright holder. Front cover image by PEXELS under CC0 license may be reproduced free for personal and commercial use and no attribution required.

Towards Trustable Software

